PARAMETERISATION AND PROBABILITY IN IMAGE ALIGNMENT

Nicholas Molton, Andrew Davison, lan Reid

Department of Engineering Science
University of Oxford
Parks Road, Oxford OX1 3PJ,

ABSTRACT

In this paper we investigate extending the gradient-based in-
verse compositional image alignment method described by
Baker and Matthews [1] by formulating the alignment pro-
cess probabilistically using Bayes rule to obtain a posterior
estimate of the alignment. The probabilistic formulation
makes use of prior statistical information on the aligning
function parameters, and we investigate the use of arbitrary
parameterisation of this function to match the physical sys-
tem generating the warp.

We compare the probabilistic method to the standard in-
verse compositional algorithm by using affine alignment to
track locally planar image regions through image sequences
in real-time. We show that the stabilising effect of proba-
bilistic alignment gives more reliable results with little ef-
fect on alignment speed. For this application we also find
that the choice of warp parameterisation is significant in its
own right, as we get much better results from the standard
inverse compositional algorithm with a more physically mo-
tivated affine parameterisation.

1. BACKGROUND TO IMAGE ALIGNMENT

Image alignment as described here is the process of bringing
into alignment two image regions by finding the parameters
of a known function relating position in one region to po-
sition in the other, where the parameters are initially only
approximately known.

Alignment is useful for any application where pixels in
alocal area are expected to move in way which can be mod-
elled by a function of position; for example, for tracking
rigid objects of known surface shape moving in 3D, track-
ing the images from a rotating camera, or tracking non-rigid
objects which deform in a way which can realistically be
modelled.

The image alignment problem has been studied for a
number of years. Early work using a gradient method was
done by Lucas and Kanade [2], and many authors have since
looked at modifications to this [3][4][5][1][6]. There are
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also a range of methods which perform image alignment
in very different ways for different applications, for exam-
ple, optic flow [7], look up techniques [8], or feature match-

ing [9]

1.1. Inverse compositional image alignment

The work described here is based on the inverse composi-
tional image alignment algorithm of Baker and Matthews [1],
which is a more efficient formulation of the Lucas and Kanade
method. Using Baker and Matthews’ notation, the method
aims to align an image I with a template image T, as illus-
trated in Figure 1. I(x), and T'(x) represent the intensity in
images I and T at image position x. The alignment func-
tion W(x; p) maps an image position x to a new position x’,
and is a function of the image position x and a set of warp
parameters p. The method aims to minimise the following
cost function with respect to Ap:
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where p corresponds to the current estimate of the set of
warp parameters needed to bring the two images into align-
ment, and variation of Ap is used to obtain the most optimal
alignment from the image data. The summation is done on
a set of pixels in the region of interest. This might be all the
pixels in an area, or the subset of these for which the image
intensity gradient is significant. The warp estimate is then
updated as follows:
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that is the new warp is the total effect of applying the old
warp, followed by the inverse of the warp defined by Ap.
The minimisation is done by performing a first order Taylor
expansion on Equation 1 at the point x to give:
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Alignment minimises the difference between these two images by adjusting Ap

Fig. 1. Inverse Compositional image alignment. The warp W(x; p) is the current estimate of the warp required for alignment.
The warp W(x; Ap) is a small adjustment warp calculated in the alignment algorithm. Because this adjustment is calculated
from gradient properties of T, which are constant for all images I, the algorithm is computationally efficient.

where the Jacobian g—l‘i is evaluated at p = 0 and the current

value of x. It is assumed that the parameter vector 0 maps
points to themselves. Differentiating and setting the result
to zero gives (see [1] for more details):
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1.2. The need for probabilistic image alignment

The inverse compositional algorithm, and other-non prob-
abilistic image alignment algorithms often become unsta-
ble when the number of parameters in the warp rises above
about three or four. A number of authors note instability
when using an affine warp [3][5]. We hope to improve on
the stability of the method by solving the alignment prob-
lem probabilistically, taking into account uncertainty in the
image difference measurements and prior information about
the warp parameters.

The standard inverse compositional algorithm uses a prior
estimate of the warp (defined by p) as the starting point for
alignment. We aim to also make use of a measure of the
uncertainty in this prior estimate. This tells us which com-
ponents should change in preference to others during align-
ment and gives us a measure of the overall change which is
reasonable in any alignment step.

Since prior information will often come from a model
of a physical system, with its own set of parameters, we
wish to use the same parameters to describe the warp used in
alignment. This will ensure that the warping function is cor-
rect, and that uncertainty information can be passed directly
between the alignment process and the physical model. In

general this will result in an arbitrarily complex function to
describe the warp, and the consequence of this is discussed
in Section 2.

We formulate image alignment as the calculation of the
posterior distribution of Ap calculated through Bayes rule.
This allows prior information and sources of uncertainty in
the inverse compositional measurement (I (W(x; p))—7'(x))
to be taken into account. As well as estimating the warp, this
method also gives a confidence measure in it, which makes
the result more useful to other processes.

2. PARAMETERISATION OF THE IMAGE WARP

The transform relating views of an object can often be de-
scribed by a simple and compact equation. For example, a
2D homography describes the transform relating views of a
planar surface moving in 3D, or views from a rotating cam-
era, or many common non-rigid 2D transformations such as
shearing, stretching, or scaling. For a particular application
we assume that a possibly over-general, but algebraically
simple expression like this is known. This expression, Wy, is
a function of image position x, and a set of parameters p:

x' = WS(X, ps)-

Now suppose we would actually prefer to describe the trans-
formation using a different parameterisation, W, which better
reflects the physical system being studied:

x' =W(x,p).

For example we might be tracking a planar surface on a
mechanism moving in a restricted way in 3D, or tracking
images from a rotating camera. The transformation in these
cases is a homography, but a more specialised parameteri-
sation whose parameters also have physical meaning is pos-
sible.



In general the warp W can be quite complex, which could
make the inverse compositional image alignment method
computationally expensive if it is used directly. If, how-
ever, we can find the simplest algebraic expression which
is general enough to describe the system (W,), and write its
parameters as a function of the parameters of W, the effect
on the inverse compositional algorithm should be minimal.
If the function relating the two parameter vectors is:

where p is the parameter vector of W and p is the parameter
vector of Ws. The warp function W then becomes:

x' =W(x,p) = Ws(x,Ps) = Ws(x, f(P)),
and the Jacobian of the warp transform becomes:
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The inverse compositional algorithm needs to evaluate these
values for every pixel being used to calculate the alignment
but the calculation has been broken down into the evalua-
tion of f(p) and %;’)(p), which are potentially slow but
need only be done once per iteration, and the evaluation of
Ws(x, f(p)) and gﬂi (x, f(p)), which are relatively simple
operations, at every pixel. Therefore the warping function
can be reparameterised with negligible cost to the inverse
compositional algorithm.

One possible complication is that the inverse composi-
tional image alignment algorithm linearises the warp func-
tion around the zero warp position, so parameterisations
which are excessively nonlinear in this region might be ex-
pected to work less well.

We tested the usefulness of parameterisation on its own
by using an inverse compositional tracker to align the im-
ages coming from a rotating camera, and comparing the re-
sult to measurements coming from a gyroscopic sensor. For
this application the parameterisation constrains the general
2D homography (W), with eight degrees of freedom, to the
conjugate rotation corresponding to our calibrated, fixed fo-
cal length camera, which has only three degrees of freedom.
The resulting rotation tracker was able to very reliably track
the motion of a rotating camera in real-time [10].

3. PROBABILISTIC INVERSE COMPOSITIONAL
IMAGE ALIGNMENT

The inverse compositional algorithm calculates a least squares
estimate of a state Ap from a series of measurements (one
for each pixel) which are a function of the state:

2= I(W(x;p)) — T(x) ~ VTS—gAp (5)

We wish to calculate a better estimate of Ap by specifying
uncertainty in the measurement equation, and prior infor-
mation on Ap, and including them in the calculation. This
estimate is the posterior distribution of Ap, given by Bayes
rule:
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3.1. Alikelihood function for Ap

A more accurate version of Equation 5 includes terms rep-
resenting uncertainty in the measurement:

z = VT@AP'FTM +VTny + VT @n& (7)
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where the terms n1, ny, and n3 are zero mean Gaussian
random variables of dimensionality 1, 2, and n (the size of
the warp parameter vector) respectively. Between them they
are intended to represent uncertainties which are identical at
each pixel (for example, camera noise), uncertainty which
increases when contrast is high (for example, aliasing ef-
fects), and uncertainties which increase with distance from
the patch centre (for example errors introduced through lin-
earisation in the measurement equation). This choice of un-
certainty model is discussed in more detail in [10]. For
simplicity we avoid making the uncertainty terms (the n
terms) a function of either p or Ap. The likelihood function
p(z|Ap) following from this uncertainty model is:
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and 0%, Ay, and A3 are the (co)variances of n1, nz, and n3
respectively.

3.2. The posterior distribution of Ap
We assume that a prior for Ap is available with an expected
value of u.., and a covariance of A,

e~ 3(Ap—u) TAT (Ap—ps)

(10)
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Prior information should improve the stability of image align-
ment as it represents something to balance against evidence
from the pixel intensity difference measurements. Combin-
ing the intensity difference measurement model at a point
(Equation 8) with the prior definition (Equation 10) using



Bayes rule (Equation 6) gives a Gaussian posterior estimate
of Ap from the measurement at a single pixel of Ap, with
a covariance of Aap, .
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Combining the measurements at individual pixels into an
overall estimate of Ap, assuming that the measurements are
uncorrelated and noting that the prior is the same for all
pixel measurements gives an estimate for Ap of:
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This calculation is described in detail in [10].

3.3. Implementation

Equations 11, 12, and 9 are used in the following way. When
each new image arrives for alignment, any available infor-
mation about the warp is used to set the priors as follows:

e Set p to the prior estimate of the warp
e Set A, to the prior estimate covariance of the warp
e Set u, to zero

Then, as the inverse compositional method runs, the value
1 1S Set at each iteration to the parameter vector which rep-
resents the difference between the current warp estimate (p)
and the initial estimate of p, set solely from the prior infor-
mation. This ensures that during the iterative loop, where
p is being updated, the prior is always effectively set to the
starting p value. lteration continues until the rms value of
pixel intensity difference, I(W(x;p)) — T'(x), drops below
a threshold.

We applied Gaussian image smoothing with a standard
deviation of one pixel to the images for the calculation of in-
tensity gradient VT'. The images were otherwise unsmoothed.

4. PROBABILISTIC ALIGNMENT EXAMPLE: AN
AFFINE PATCH TRACKER

The affine warp has six degrees of freedom and can be writ-
ten as:
x = Ax + t,,

where x, x', and t,, are 2-vectors and A is a 2x2 matrix. This
is the simplest parameterisation of the affine warp in terms
of six variables (W) but it is difficult to assign prior infor-
mation to these parameters during tracking. The natural in-
terpretation of an affine transformation is as a translation
of the patch centre (t,,t,), a rotation (by «), an isotropic
scaling (s;) and a non-isotropic scaling (s,,) in a particular
direction (angle 6). This parameterisation is not suitable for
use in the inverse compositional algorithm directly, because
changing the value of 8 has no effect when s, is zero, giv-
ing a zero column in the Jacobian, but it can be modified to
a form which is suitable while remaining intuitive and easy
to apply prior estimates to:
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and xq is the centre position of the image patch in the tem-
plate image T. The xq terms in the function for t, ensure
that a change in A does not change the position of the point
X (the centre of the patch), so that the only way to translate
the patch is through the vector t. The effect of the parameter
sp Is to stretch along the x or y axis, and the parameter s45
stretches along the axes at 45 degrees to the x and y axes.
These terms replace § and s,,.

4.1. Live affine tracking tests

We tested the affine trackers firstly by running each tracker
in real time on a sequence of images coming from a firewire
camera. We compared three tracking methods: an affine
version of the standard inverse compositional algorithm as
described by Baker and Mathews; a reparameterised affine
tracker using the parameterisation described above; and a
probabilistic version of the parameterised tracker.

From these tests it was apparent that the parameterised
trackers were both significantly more stable than the stan-
dard affine tracker. This is particularly noticeable for im-
age regions which are invariant to some components of the
affine transformation. For example a texture with one ho-
mogenous colour in the bottom left quadrant and a differ-
ent homogenous colour elsewhere (such as might be seen
when viewing the corner of an object) does not change in
appearance under changes in scale. Ideally we would write



a feature detector which scores image regions based on vari-
ability under each component of the alignment warp, to en-
sure that we are always tracking features for which all com-
ponents of the warp are observable (The Shi Tomasi de-
tector [3] is designed to do this but for image translation
only). The problem is limited to a certain extent when using
a probabilistic tracker, which, because it places a prior on
each component of the warp, at least remains stable when
tracking this type of texture.

4.2. Rendered image sequence tests

We also ran a series of partially synthetic tests for a more
quantitative assessment of performance. A number of syn-
thetic image sequences were generated by loading an image
from disk and projecting it into a virtual camera moving
along a path in 3D. The image sequences were generated by
bilinear interpolation of the file image, and adding noise to
each pixel, uniformly distributed between plus and minus
five intensity values.

We used up to 10 different images and 10 different syn-
thetic camera motions, each sequence being between 100
and 200 frames long. The camera moves were designed to
reproduce common motions which might happen when a
camera moves around a scene.

We ran the Shi Tomasi feature detector [3] to find the
best 50 features in the first image of the sequence and then
eliminated any features corresponding to positions on the
plane which would not be in view for the whole of the re-
mainder of the sequence. This typically resulted in 20-40
trackers per sequence, each running on a 31 pixel square im-
age patch. Across all sequences, the corners of the tracked
patches moved on average by 2.52 pixels between each im-
age, although for some sequences the variation was signifi-
cantly more or less than this. Tracking of each feature was
carried out by performing alignment at each frame, using
the alignment result from the previous frame as a starting
point. This test highlights differences in performance, since
a failure in alignment at any point makes it vary hard to
maintain tracking for the remainder of the sequence.

4.3. Rendered image sequence results

We evaluated the trackers by defining an error measure for
each alignment as the average difference in image position
of the four corners of the image patch when warped by the
calculated affinity and by the ground truth homography. Be-
cause the affine tracker cannot reproduce the eight degrees
of freedom of the homography, the two transformations will
rarely line up exactly, but a better alignment algorithm will
give a closer result.

Figure 2 compares the distribution of final alignment er-
ror for the three alignment methods using the full set of
100 synthetic image sequences. Alignments giving errors
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Fig. 2. Cumulative distribution of alignment error for the
three trackers

above 10 pixels are collected in the last data points in the
graph. The value of each graph at a particular alignment
error value indicates the proportion of alignments made to
within this level of error. The graphs show that the best re-
sults consistently come from the fully probabilistic tracker,
followed by the parameterised tracker, and lastly the stan-
dard affine tracker. In terms of speed the ranking is re-
versed, with the standard affine alignment method taking
on average 0.531ms, the reparameterised method 0.658ms,
and the probabilistic method 0.775ms. These timing val-
ues are however biased towards trackers which are badly
initialised and therefore stop iterating after the first few it-
erations, which have failed to improve the alignment score.

The improved results following re-parameterisation may
be due to the fact that the new parameterisation relates dif-
ferent types of image change more closely to parameters.
For example, patch translation, which is usually the great-
est cause of intensity change, can occur by changing many
different combinations of the six parameters of the standard
affine model, but is isolated to two parameters in the repa-
rameterised model. The intensity error surface in parameter
space might also be more stable after the re-parameterisation,
or the range of motions spanned by small changes around
the origin of parameter space might be more limited, result-
ing in greater stability.

The use of prior information during alignment was clearly
of benefit, although choosing the prior values is not always
straightforward. We chose prior uncertainty values which
were large enough to cover the large range of camera mo-
tions in the test set. With more certain prior information,
from, for example a Kalman Filter tracking groups of image
features through time, the probabilistic alignment method
should give stronger results.
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Fig. 3. The effect of changing patch size on the number of
alignments made with an error less than 2 pixels

We also looked briefly at the effect of changing the patch
size used by the trackers on the proportion of alignments re-
sulting in an error of less than 3 pixels (shown in Figure 3)
and on tracking time. The performance advantage of the
probabilistic tracker is greatest when the patch size is rela-
tively small. As the patch size increases, the number of pixel
measurements made rises and the relative significance of the
prior falls, so that eventually the probabilistic tracker per-
forms very similarly to the parameterisaed tracker. As the
number of pixels in the patch increases, the average align-
ment time increases linearly, as would be expected, and the
difference in alignment time between the methods remains
fixed. Besides speed issues, a smaller patch size is also de-
sirable because the assumption that parts of the image are
locally planar becomes more credible.

5. CONCLUSIONS

We have looked at improving the stability of the inverse
compositional image alignment algorithm by incorporating
a physically motivated warp model, prior uncertainty, and
image intensity measurement uncertainty in a probabilistic
estimation process. Like the original inverse compositional
method, the methods we describe can be run and initialised
in real time. Further detail of the work described here can
be found in [10].

Changing the parameterisation of the warp function can
be done quite straightforwardly, with little computational
cost, though care must be taken to ensure that the new warp-

ing function does not introduce excessive nonlinearities. Repa-

rameterisation can be useful in its own right, and this is
demonstrated in Section 4 where a non-traditional param-
eterisation of the affine transformation greatly improved the
stability of affine tracking, even without the probabilistic

methods described in the rest of this paper.

The probabilistic version of image alignment, with pri-
ors set appropriately gave an improvement in alignment sta-
bility for a modest increase in running time. By changing
the prior uncertainty the amount of freedom given to each
parameter can be changed at will and even set to zero, re-
moving the parameter from the optimisation. This is signifi-
cant because the basic inverse compositional method is very
sensitive to the freedom in the warp parameters.

Although we looked at re-parameterisation and proba-
bility for the inverse compositional image alignment method
here, the logic would be very similar for comparable gradient-
based methods, such as the original Lucas and Kanade tracker.
The ability to change the parameterisation at will and to
use uncertainty information demonstrates that these meth-
ods may be stable and flexible enough to be applied to a
wider range of applications than they have been used in to
date, for example, in tracking textured non-rigid objects.
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